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Random deposition of two annihilating species in the„111… dimension
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We present simulation results for the one-dimensional random deposition of two annihilating speciesA and
B, falling with probabilitiesp andq (p1q51), which then react to produce an inert product, i.e.,A1B→0.
Two different annihilation rules are defined: top annihilation and nearest-neighbor annihilation~NNA!, leading
to distinct scaling behaviors. In particular, the values of the scaling exponents for NNA are found to be
dependent on probabilityp, suggesting different universality classes.@S1063-651X~99!01807-3#

PACS number~s!: 05.40.2a
e
r

ny
re
io
te

th
e
f

d
en
c

an
th

o

l-
e.
e
m

us
h
io

o

pa
he

i
an
Fo
, a

-

of
ity.
e-

, no
is

e-
ion
r-

.,

n
les.
t
gh-

ful
-

ases

5 les
The formation, growth, and geometry of rough interfac
is a subject of great interest that has been extensively
viewed@1–5#. These studies play an important role in ma
phenomena of scientific interest and are relevant in a g
variety of experimental situations, including the propagat
of flame fronts, fluid flow in porous media, corrosion, ma
rial fractures, atomic deposition processes, and growth
bacterial colonies. Despite the diversity of these systems
have much in common, and it is possible to categorize th
into universality classes. There are two main approaches
the theoretical analysis of such systems, one is based
computer simulations of discrete models, and the other
scribes the evolution of the interfaces by stochastic differ
tial equations. The simplest discrete model for interfa
growth is random deposition~RD!. Its simplicity is such that
it allows us to determine the scaling exponents exactly,
to formulate a stochastic differential equation leading to
same scaling exponents@3#.

The aim of the present paper is to simulate the rand
deposition of two annihilating speciesA andB ~‘‘particles’’
and ‘‘antiparticles’’!. The recombination of particles that co
lide during diffusion and react to form an inert product, i.
the well-known reactionA1B→0, where 0 represents th
inert product, is a simple example of nonequilibrium syste
that have attracted a lot of interest@6–12#. This reaction
leads to the segregation of like particles, and provides a
ful model to also represent different physical systems suc
the decay of lattice excitations, the monopole annihilat
and surface reactions on supported catalyst.

It is quite simple to define the random deposition of tw
annihilating particles. First, a particleA or B, with probabil-
ity p or q, respectively (p1q51), is chosen to fall from a
randomly located position over the surface. The selected
ticle follows a straight vertical trajectory until it reaches t
surface, whereupon it sticks or reacts. If the falling particle
deposited on top of a column of its own kind or on a vac
column, the height of such a column is increased by 1.
the annihilating process, we can define two different rules
in Fig. 1.

*Author to whom correspondence should be addressed. FAX:
2652-430224. Electronic address: charly@unsl.edu.ar
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~i! Top annihilation~TA!, a particle reacts only with an
tiparticles located at the top of a column.

~ii ! Nearest-neighbor annihilation~NNA!, a deposited
particle on the top of a column reacts at random with any
its nearest-neighbor antiparticles, with the same probabil

In both situations the height of the reacting column d
creases by 1, generating a single-valued interface, i.e.
overhangs are allowed. The former model is simpler and
introduced for comparison with the latter, which is more r
alistic from a physical point of view and leads to segregat
of like particles. As is commonly defined, the unit time co
responds to the deposition ofL particles on the interface, i.e
t5N/L whereN is the number of deposited particles andL is
the number of columns or system size.

The profile of the evolving surface will gradually roughe
under the stochastic deposition and annihilation of partic
Early simulations by Family and Viseck@13# suggested tha
in deposition processes of like particles, the surface rou
ness shows a dynamical scaling behavior.

To describe the discrete growth of an interface, it is use
to introduce two quantities@3#. The mean height of the sur
face ^h(t)&, is defined as

^h~ t !&5
1

L (
i 51

L

h~ i ,t !, ~1!

whereh( i ,t) is the height of columni at time t. For deposi-
tion processes with constant rate, the mean height incre
linearly with time:

4-

FIG. 1. In top annihilation~a!, the B particle ~empty square!
reacts only with theA antiparticle ~filled squares! below it. In
nearest-neighbor annihilation~b!, the B particle ~empty square! re-
acts randomly with any of its nearest-neighbor A antipartic
~filled squares!, with the same probability.
89 ©1999 The American Physical Society
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^h~ t !&;t. ~2!

The interface widthw(L,t), defined by the r.m.s. fluctuatio
in the height

w~L,T!5F 1

L (
i 51

L

@h~ i ,t !2^h~ t !&#2G1/2

~3!

that characterizes the roughness of the interface.
Two different regimes, separated by a crossover timet*

can be distinguished.
~i! Growth regime, in which the width increases as

power of time,

w~L,t !;tb for t!t* . ~4!

~ii ! Saturation regime, during which the width reache
saturation value that increases as a power of the system
L,

wsat~L !;La for t@t* , ~5!

where the crossover~or saturation! time t* depends also on
the system size

t* ;Lz. ~6!

The exponentsa, b, andz are linked by the scaling law

z5
a

b
. ~7!

Let us consider first the RD of two annhilating species w
the TA rule. Figures 2 and 3 show our simulation results
the average height and the width of the interface, for diff
ent values of the probabilityp and fixed system sizeL.

FIG. 2. Log-log plot for the time evolution of the average inte
face height^h(t)& with the TA rule, for different values of the
probability p and fixed system sizeL575. The asymptotic slope
are 1 forpÞ1/2 and 1/2 forp51/2. The unit time corresponds t
the deposition ofL particles on the interface, i.e.,t5N/L whereN
is the number of deposited particles andL is the number of columns
or system size.
a
ize

r
-

Periodic boundary conditions are used in the horizontal
rection, and the statistical average is obtained over 200 in
pendent simulations for each parameter.

Since there is no correlation between columns, everA
~or B) column grows independently with probabilityp (q)
and decreases with probabilityq (p). The probability that a
given column has heighth5uNA2NBu after deposition of
N5NA1NB particles is given by the binomial distribution
which for N→` becomes the Gaussian distribution. It
straightforward to prove that the asymptotic behavior
given exactly by

^h~ t !&;H up2qut, pÞq,

S 2

p
t D 1/2

, p5q51/2,
~8!

w~ t !;t1/2, 0<p, q<1/2, ~9!

in agreement with the numerical results and reproducing
same scaling exponents as common RD,b51/2 anda5~not
defined!, i.e., the interface width increases ast1/2, but never
saturates. It is clear that the most probable arriving part
will finally cover the whole structure. Whenp5q, the prob-
lem is essentially a random walk in the semiaxish.0 with a
reflecting wall ath50 @14#, which gives a nonvanishing av
erage height̂h&;t1/2.

Most interesting is the RD of two annihilating speci
with NNA rule, since it allows the segregation of like pa
ticles. Figure 4 shows the average height as a function
time for different values of the probabilityp and fixed sys-
tem sizeL. In this casê h(t)& is smaller than that observe
in Fig. 2. This fact is expected since with the NNA ru
adjacent columns of unlike particles cannot exist, so ap
increases a larger number of vacant columns will appe
which reduces the interface height. However, in the limit
→` we obtain essentially the same asymptotic behavior
in the TA model.

Figure 5 shows the time evolution of the surface widthw,
for different values of the probability and fixed system si
L. Note that the interface width first increases very fast a

FIG. 3. Log-log plot for the temporal dependence of the int
face widthw(t) with the TA rule, for various probabilitiesp and
fixed system sizeL575. The observed value for the growth exp
nent isb50.499460.0002.
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finally saturates to a constant value which depends on
probability p. In the growth regime the time dependence
the width follows a power law

w~p,t !;tb8, t!t8. ~10!

For 0,p,1/2 we obtainb8.1/2, and forp51/2, b8.1/4.
Then the surface width becomes smaller as the probabilip
increases up top51/2. Of course, the behavior is symmetr
in p aroundp51/2. It is clear that the competition betwee
deposition and reaction leads to saturation. From Fig. 5
observe that the saturation widthwsat(p)[w(p,t→`) de-
creases monotically with the probabilityp. The saturated sur
face width versus the probabilityp, for fixed values of the
system size is shown in Fig. 6. According to this figure, t
dependence of the saturated widthwsat(p) on the probability
p also follows a power law

wsat~p!;pa8, t@t8, ~11!

FIG. 4. As in Fig. 2 but here with the NNA rule. The asympto
slopes are the same as those in Fig. 2.

FIG. 5. As in Fig. 3 but here with the NNA rule. The growt
exponents areb850.500360.0019 for 0,p,1/2 andb850.262
60.004 forp51/2.
he
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and surprisinglya8 is found to be universal, i.e., regardle
of the system sizeL, we obtaina8.21. It should be noted
that wsat(p)→` for p→0, in agreement with the commo
RD model.

It is also interesting to analyze the time dependence of
width w for different values of the sizeL and fixed probabil-
ity p, which is shown in Fig. 7. Initially the width increase
as a power of time

FIG. 6. The saturated widthswsat(p), as a function of probabil-
ity p and fixed system sizeL. The observed value for the expone
in Eq. ~11! is a8521.0460.08.

FIG. 7. Log-Log plot for the time dependence of the interfa
width w(t) with the NNA rule, for different values of the system
sizeL and fixed probabilities~a! p50.1 and~b! p50.5.



th
s-
ea
tic
o

w

at

ent

er

e

of
and

uni-
h
w-

-

s-
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w~L,t !;tb, t!t* , ~12!

where the growth exponent is observed to beb.1/2 for 0
,p,1/2 andb.1/4 for p51/2.

From Fig. 7 it is evident that the saturation wid
wsat(L)[w(L,t→`) increases monotonically with the sy
tem size, as in common deposition processes without r
tion such as random deposition with relaxation or ballis
deposition~BD!. The saturated surface width as a function
the system sizeL, for fixed values of the probabilityp, is
presented in Fig. 8. Here we again observe a simple po
law for the saturated widthwsat(L) with the system size

wsat~L !;La t@t* , ~13!

where the roughness exponent isa.1/2 independent of the
probability p.

Fortunately, there is a simple way to collapse all the d
recorded onto a single curve. If we plotw(L,p,t)/wsat(L,p)
as a function oft/(pz8Lz), the result will be a unique curve
independent of the system sizeL and the probabilityp. Then
w(L,p,t)/wsat(L,p) is a function oft/(pz8Lz) only, and we
write

w~L,p,t !

wsat~L,p!
; f S t

pz8LzD , ~14!

where f (u) is a scaling function,z[a/b, and z8[a8/b8
5a8/b.

From Eqs.~11! and ~13! we have

wsat~L,p!;wsat~L !wsat~p!;Lapa8. ~15!

Then we obtain the scaling relation

w~L,p,t !;Lapa8 f S t

pz8LzD . ~16!

FIG. 8. Log-log plot for the saturated widthswsat(L), as a func-
tion of system sizeL and fixed probabilityp. The roughness expo
nent isa50.49760.041.
c-
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There are two scaling regimes depending on the argum
u[t/pz8Lz.

~a! For smallu, the scaling function increases as a pow
law, and we have

f ~u!;ub, u!1. ~17!

~b! For t→` the width saturates, and in this limit we hav

f ~u!5const, u@1. ~18!

The validity of the scaling assumption~14! is shown in Fig.
9. It should be clear that curves with different values
scaling exponents cannot be collapsed onto a unique
universal curve.

To conclude this paper we address some questions of
versality. It is well known that a wide variety of growt
models for deposition processes belong to one of the follo
ing three different universality classes.

~i! Random deposition withb51/2 anda5~not defined!
@15#.

~ii ! Edwards-Wilkinson~EW!, with b51/4 anda51/2
@16#.

~iii ! Kardar-Parisi-Zhang~KPZ!, with b51/3 and a
51/2 @17#.

As was already observed, the case wherep50 is trivial

FIG. 9. The random deposition with NN annihilation data re
caled according to Eq.~14!. In ~a! 0,p,1/2, b5b851/2, z51,
andz8522. In ~b! p51/2, b5b851/4, z52, andz8524.
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and reproduces the same scaling exponents as RD. Fp
51/2 the values or the scaling exponents are found to bb
.1/4 anda.1/2, essentially the same exponents as the
universality class. However, when 0,p,1/2 the scaling ex-
ponents areb.1/2 anda.1/2, which do not belong to any
of the above universality classes. This situation could be
terpreted as a crossover or hybridization between RD
EW universality classes. Another remarkable result is
universality of the exponenta8 in Eq. ~11!. Clearly one ex-
pects thatwsat should depend onp, but it is not intuitively
v.

et
-
d
e

obvious that such a dependence is a simple power law w
as well a well defined exponent as that of Eq.~11!. Future
efforts will be directed to studying the same problem in
two-dimensional substrate and obtaining a partial differen
equation describing the evolution of the interface.
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